Foldings in studying flag manifolds

Eunjeong Lee

Chungbuk National University

jointly with Yunhyung Cho and Naoki Fujita

Pacific Rim Complex and Symplectic Geometry Conference, Kyoto, August 1–5, 2022

Motivating	triangle
•000 ⁻	

Gelfand-Tsetlin type string polytopes in type C 0000

Motivating triangle

Question

Can we build an analogous picture for general $X^N \hookrightarrow \mathbb{P}^m$?

Funieong	lee ((CBNU)
Lunjcong		(CDIVO)

イロト イポト イヨト イヨト

Motivating	triangle
•000 ⁻	

Gelfand-Tsetlin type string polytopes in type C 0000

Motivating triangle

Question

Can we build an analogous picture for general $X^N \hookrightarrow \mathbb{P}^m$? Which topological/geometric data can be obtained from $\Delta_i(\lambda)$?

Gelfand–Tsetlin type string polytopes in type C0000

What are string polytopes?

- G: simply-connected semisimple algebraic group over \mathbb{C} of type X_n . Today, X is A, B, or C.
- i: reduced decomposition of the longest element of the Weyl group of G.
- λ : dominant integral weight.

Using these data, the string polytope $\Delta_i(\lambda)$ is defined in [Littelmann, 98], which

- is a rational polytope lives in \mathbb{R}^N , where $N = \dim_{\mathbb{C}} G/B$ (if G is of type A, then $N = \frac{n(n+1)}{2}$; if G is of type B or C, then $N = n^2$),
- $\ \ \, {\bf 2} \ \ \, \Delta_{\boldsymbol{i}}(\lambda)\cap \mathbb{Z}^N \leftrightarrow \text{weights of } V(\lambda),$
- So is a Newton–Okounkov body of $(G/B, \mathcal{L}_{\lambda}, \nu_i)$ (by [Kaveh, 15]).
- For $i_A = (1, 2, 1, 3, 2, 1, ..., n, n 1, ..., 1)$ in type A_n ,

 $\Delta_i(\rho) \simeq \text{Gelfand-Tsetlin polytope GT}(\rho).$

For $i_C = (n, n-1, n, n-1, n-2, n-1, n, n-1, n-2, \dots, 1, 2, \dots, n, \dots, 2, 1)$ in type C_n ,

 $\Delta_i(\rho) \simeq \text{Gelfand-Tsetlin polytope } \mathsf{GT}_C(\rho).$

Here, ρ is the sum of fundamental weights in each case (by [Littelmann, 98]).

Combinatorics of $\Delta_i(\lambda)$ depends on i.

< ロ > < 同 > < 回 > < 回 >

э

escription of string polytopes in type C

Gelfand–Tsetlin type string polytopes in type C 0000 Future work 000

Gelfand–Tsetlin polytopes

$$G = \mathsf{Sp}_{4}(\mathbb{C}), \lambda = \rho = \varpi_{1} + \varpi_{2}.$$

$$\overset{2 \swarrow}{\underset{\overset{}{\sim}}} a_{1}^{(1)} \overset{\tau}{\underset{\overset{}{\sim}}} a_{2}^{(1)} \overset{\tau}{\underset{\overset{}{\sim}} a_{2}^{(1)} \overset{\tau}{\underset{\overset{}{\sim}}} a_{2}^{(1)} \overset{\tau}{\underset{\overset{}{\sim}} a_{2}^{(1)} \overset{\tau}{\underset{\overset{}{\sim}}} a_{2}^{(1)} \overset{\tau}{\underset{\overset{}{\sim}} a_{2}^{(1)$$

The *f*-vector of $GT_C(\rho)$ is (1, 12, 26, 22, 8, 1).

 $a_1^{(2)} = 0$ defines a 3-dimensional Gelfand–Testlin polytope of type A.

Description of string polytopes in type C

Gelfand–Tsetlin type string polytopes in type C 0000 Future work 000

Description of string polytopes

When G is of type A, [Gleizer–Postnikov, 00] provided a description of $\Delta_i(\lambda)$ using a wiring diagram given by *i*. However, such combinatorial descriptions are not known yet for other Lie types. On the other hand, the Lie algebras of type A, B, and C have the following relation.

Using the above relation, [Fujita, 18] studied a folding procedure for string cones.

GOAL Providing an explicit description of string polytopes in types B and C. Characterizing *Gelfand–Tsetlin type* string polytopes in type C.

Description of string polytopes in type C

Gelfand–Tsetlin type string polytopes in type C 0000 Future work 000

Fixed point Lie subalgebras

$$\Delta_{\boldsymbol{i}}(\lambda) = \mathcal{C}_{\boldsymbol{i}}^{(C_n)} \cap \mathcal{C}_{\boldsymbol{i}}^{\lambda}$$

 $\mathcal{C}_{i}^{(C_{n})}$ is called the string cone, $\mathcal{C}_{i}^{\lambda}$ is called the λ -cone.

Define a Lie algebra automorphism $\hat{\omega} : \mathfrak{sl}_{2n} \to \mathfrak{sl}_{2n}$ by $\hat{\omega}(X) = (\overline{w}_0)^{-1} \cdot (-X^T) \cdot \overline{w}_0$ for $X \in \mathfrak{sl}_{2n}$, where

$$\overline{w}_0 := \begin{pmatrix} 0 & 0 & 0 & \cdots & -1 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 1 & \cdots & 0 \\ 0 & -1 & 0 & \cdots & 0 \\ 1 & 0 & 0 & \cdots & 0 \end{pmatrix} \in \mathfrak{sl}_{2n}.$$

Then $(\mathfrak{sl}_{2n})^{\hat{\omega}} := \{X \in \mathfrak{sl}_{2n} \mid \hat{w}(X) = X\} = \mathfrak{sp}_{2n}.$

Motivating	triangle
0000 -	

Gelfand–Tsetlin type string polytopes in type C 0000 Future work 000

Foldings in string cones

$$\begin{array}{l} \Theta \colon W^{(C_n)} \hookrightarrow \mathfrak{S}_{2n} = W^{(A_{2n-1})} \text{ given by } \Theta(s_i) = s_i s_{\overline{i}} \text{ if } i \neq n; \ \Theta(s_n) = s_n. \end{array}$$

For instance, $\Theta(2, 1, 2, 1) = (2, 1, 3, 2, 1, 3).$ Define $\Omega_i^{A,C} \colon \mathbb{R}^6 \to \mathbb{R}^4$ by

$$\Omega_{\boldsymbol{i}}^{A,C}(a_1, a_2, \bar{a}_2, a_3, a_4, \bar{a}_4) := (a_1, a_2 + \bar{a}_2, a_3, a_4 + \bar{a}_4).$$

On the other hand, $W^{(B_n)} = W^{(C_n)}$. Define $\Gamma^{C,B}_{\boldsymbol{i}} \colon \mathbb{R}^4 \to \mathbb{R}^4$ by

$$\Gamma_{\boldsymbol{i}}^{C,B}(a_1, a_2, a_3, a_4) := (2a_1, a_2, 2a_3, a_4).$$

Theorem [Fujita, 18]

Accordingly, $\mathcal{C}_{i}^{(C_{n})}$ and $\mathcal{C}_{i}^{(B_{n})}$ are combinatorially same.

Description of string polytopes in type C0000000 Gelfand–Tsetlin type string polytopes in type C 0000 Future work 000

Symplectic wiring diagrams

Э

æ

Description of string polytopes in type C0000000 Gelfand–Tsetlin type string polytopes in type C 0000 Future work 000

Rigorous paths in symplectic wiring diagram

For a rigorous path P, define

$$\sum_{j=1}^{N} c_j a_j \ge 0, \quad \text{where } c_j = \begin{cases} 1 & \text{if } P \text{ travels from } \ell_r \to \ell_s \text{ at } a_j \text{ and } r < s, \\ -1 & \text{if } P \text{ travels from } \ell_r \to \ell_s \text{ at } a_j \text{ and } r > s, \\ 0 & \text{otherwise.} \end{cases}$$

イロト イロト イヨト

Description of string polytopes in type C0000000 Gelfand–Tsetlin type string polytopes in type C 0000 Future work 000

String cone inequalities

$$\begin{array}{c} (\ell_1 \to \ell_2) \rightsquigarrow \overline{a}_4 \ge 0 \\ (\ell_2 \to \ell_{\bar{2}}) \rightsquigarrow a_1 \ge 0 \\ (\ell_2 \to \ell_1 \to \ell_{\bar{1}} \to \ell_{\bar{2}}) \rightsquigarrow a_3 - (a_4 + \bar{a}_4) \ge 0 \\ (\ell_2 \to \ell_1 \to \ell_1 \to \ell_{\bar{2}}) \rightsquigarrow (a_2 + \bar{a}_2) - a_3 \ge 0 \\ (\ell_2 \to \ell_1 \to \ell_{\bar{2}}) \rightsquigarrow \overline{a}_2 - a_4 \ge 0 \\ (\ell_2 \to \ell_{\bar{1}} \to \ell_{\bar{2}}) \rightsquigarrow a_2 - \bar{a}_4 \ge 0 \\ (\ell_{\bar{2}} \to \ell_{\bar{1}}) \rightsquigarrow a_4 \ge 0 \end{array} \right\}$$
 define $\mathcal{C}_i^{(A_3)} \subset \mathbb{R}^6$

Using the projection map

$$\Omega_{\boldsymbol{i}}^{A,C}(a_1, a_2, \bar{a}_2, a_3, a_4, \bar{a}_4) = (a_1, a_2 + \bar{a}_2, a_3, a_4 + \bar{a}_4) =: (\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3, \mathbf{a}_4) \in \mathbb{R}^4,$$

$$\begin{split} \mathcal{C}_{\boldsymbol{i}}^{(C_2)} &= \Omega_{\boldsymbol{i}}^{A,C}(\mathcal{C}_{\Theta(\boldsymbol{i})}^{(A_3)}) = \{ (\mathsf{a}_1, \mathsf{a}_2, \mathsf{a}_3, \mathsf{a}_4) \in \mathbb{R}^4 \mid \ \mathsf{a}_4 \geq 0, \mathsf{a}_1 \geq 0, \\ &\mathsf{a}_3 - \mathsf{a}_4 \geq 0, \mathsf{a}_2 - \mathsf{a}_3 \geq 0, \mathsf{a}_2 - \mathsf{a}_4 \geq 0 \}. \end{split}$$

We notice that the inequality $a_2 - a_4 \ge 0$ is redundant because $(a_2 - a_4) = (a_2 - a_3) + (a_3 - a_4)$.

글▶ 글

Motivating	triangle
0000 -	

Symmetric rigorous paths

For a path $P = (\ell_{r_1} \to \cdots \to \ell_{r_{s+1}})$ in a symplectic wiring diagram $G^{\text{symp}}(i, k)$, its mirror P^{\vee} is defined by

$$P^{\vee} := (\ell_{\overline{r_{s+1}}} \to \dots \ell_{\overline{r_1}}).$$

A path P with k = n is called symmetric if $P = P^{\vee}$.

Theorem [Cho–Fujita–L, in preparation]

The number of facets of the string cone $C_i^{(C_n)}$ is

$$\sum_{k=1}^{n-1} \#\{\text{rigorous paths in } G^{\text{symp}}(\boldsymbol{i},k)\} + \#\{\text{symmetric rigorous paths in } G^{\text{symp}}(\boldsymbol{i},n)\}.$$

< < >>

э

Sketch of proof

• We use the result [Fujita, 18]:

$$\Omega_{\boldsymbol{i}}^{A,C}(\mathcal{C}_{\boldsymbol{i}}^{(A_{2n-1})}) = \mathcal{C}_{\boldsymbol{i}}^{(C_n)}.$$

- We use the description of the string cones in type A in terms of the wiring diagrams and rigorous paths in [Gleizer–Postnikov, 00].
- To prove the non-redundancy of the string cone inequality obtained by a symmetric rigorous path in G^{symp}(i, n), we use the non-redundancy of defining inequalities in type A.
- To prove the redundancy of the string cone inequality obtained by a non-symmetric rigorous path in $G^{\text{symp}}(i, n)$, we construct appropriate *symmetric* rigorous paths which provides the given string cone inequality.

Motivating triangle	Description of string polytopes in type C	Gelfand–Tsetlin type string polytopes in type $C \bullet 000$	Future work
0000	0000000		000
Contractions			

cont(i): erase ℓ_1 and $\ell_{\overline{1}}$ and rearrangement.

Contraction maps a reduced word of the longest element in $W^{(C_n)}$ to a reduced word of the longest element in $W^{(C_{n-1})}$.

For i = (1, 3, 2, 1, 3, 2, 1, 3, 2), cont(i) = (2, 1, 2, 1).

Motivating triangle	Description of string polytopes in type C	Gelfand–Tsetlin type string polytopes in type C	Future work
0000	0000000	●000	000
Contractions			

cont(i): erase ℓ_1 and $\ell_{\overline{1}}$ and rearrangement.

Contraction maps a reduced word of the longest element in $W^{(C_n)}$ to a reduced word of the longest element in $W^{(C_{n-1})}$.

For i = (1, 3, 2, 1, 3, 2, 1, 3, 2), cont(i) = (2, 1, 2, 1).

Gelfand–Tsetlin type string polytopes in type C 0000

Future work 000

Contractions and the number of facets

Proposition [Cho–Fujita–L, in preparation]

For n > 2, we have

$$\|i\| \ge \|\operatorname{cont}(i)\| + (2n - 1),$$

where $\|i\|$ is the number of facets of $\mathcal{C}_i^{(C)}$. Moreover, the equality hold if and only if i is the concatenation of

cont(i) and (1, 2, ..., n, ..., 2, 1),

that is, there is no crossing except on the north sector of $G^{\mathrm{symp}}(i)$.

Eunjeong Le	e (CBNU)
-------------	----------

Gelfand–Tsetlin type string polytopes in type C 00000

Simplicial string cones in type C

Theorem [Cho–Fujita–L, in preparation]

Let g be a simple Lie algebra of type B_n or C_n with $n \ge 2$. Then, for a reduced word i of the longest element, the following are equivalent.

- **(**) The number of facets of $\Delta_i(\lambda)$ is 2N for every regular dominant integral weight λ .
- ² The string cone C_i is simplicial.
- \bigcirc The reduced word i is either

 $m{i}_C = (n, n-1, n, n-1, n-2, n-1, n, n-1, n-2, \dots, 1, 2, \dots, n, \dots, 2, 1);$ or $m{i}'_C := (n-1, n, n-1, n, n-2, n-1, n, n-1, n-2, \dots, 1, 2, \dots, n, \dots, 2, 1).$

< < >>

Motivating	triangle
0000	

Gelfand–Tsetlin type string polytopes in type C 000•

Future work 000

Gelfand–Testlin type string polytopes in type C

For
$$i_C = (n, n - 1, n, n - 1, n - 2, n - 1, n, n - 1, n - 2, \dots, 1, 2, \dots, n, \dots, 2, 1)$$
 in type C ,

 $\Delta_{i_C}(\rho) \simeq \text{Gelfand-Tsetlin polytope GT}_C(\rho)$

by [Littelmann, 98].

Theorem [Cho–Fujita–<u>L]</u>

Let G be a simple Lie group of type C_n with $n\geq 2$ and ${\pmb i}$ a reduced decomposition of the longest element. Then

 $\Delta_i(\rho) \simeq \text{Gelfand}-\text{Tsetlin polytope } \mathsf{GT}_C(\rho)$

if and only if $i = i_C$.

Key idea: Since the number of facets of $GT_C(\rho)$ is 2N, there are only two possibilities i_C and i'_C . $GT_C(\rho)$ is an integral polytope while $\Delta_{i'_C}(\rho)$ is not integral.

< < >>

Motivating triangle 0000	Description of string polytopes in type C 0000000	Gelfand–Tsetlin type string polytopes in type C 0000	Future work ●00
Future work			

• Studying other polytopes (i.e. toric degenerations) of G/B arising from cluster algebras.

There is an open embedding $U_{w_0}^- \hookrightarrow G/B$ and the the unipotent cell $U_{w_0}^-$ admits a cluster algebra structure. [Fujita–Oya, 20⁺] constructed $\Delta(G/B, \mathcal{L}_{\lambda}, \nu_s)$ for each seed s and proved that

 $\Delta(G/B,\mathcal{L}_{\lambda},\nu_{\mathbf{s}})\simeq \Delta_{\boldsymbol{i}}(\lambda) \text{ when } \mathbf{s} \text{ comes from } \boldsymbol{i}.$

In fact, the set of string polytopes is a (proper) subset of this larger family of Newton–Okounkov bodies.

Cartan–Killing type of ${\cal G}$	A_2	A_3	A_4	B_2
cluster type number of seeds	A_1 2	$\begin{array}{c} A_3 \\ 14 \end{array}$	$D_6 \\ 672$	B_2 6
number of commutation classes*	2	8	62	2

*for |i-j| with $c_{i,j} = 0$, we have $s_i s_j = s_j s_i$. This provides an equivalence relation on the reduced words. For example, $(1,3,2,1,3,2) \sim (3,1,2,1,3,2)$ in type A_3 .

Gelfand-Tsetlin type string polytopes in type C 0000 Future work 0●0

Question (work in progress)

Describe $\Delta(G/B, \mathcal{L}_{\lambda}, \nu_{s})$ for various seeds s explicitly.

글 > 글

• • • • • • • • •

Thank you for your attention!